Capgemini signed an agreement with IBM to become an IBM Quantum Hub providing its clients access to IBM’s quantum computing systems as well as professional services
Capgemini announced that it has set up a dedicated lab and team of quantum technology experts from across the globe to develop capabilities and coordinate research facilities aimed at advancing quantum technologies and exploring their potential. In addition to Capgemini’s work to explore Quantum Communications and Quantum Sensing, the initiative also includes a collaboration with IBM to help clients build and maximise their engagements in the areas of Quantum Computing.
Capgemini’s Quantum Lab (Q-Lab) comprises quantum technology experts and highly-specialist facilities in the United Kingdom, Portugal, and India to harness quantum technologies’ potential. Capgemini’s Q-Lab will coordinate research programs to develop business-driven client propositions for sectors most likely to benefit from quantum technologies in the medium future – life sciences, financial services, automotive and aerospace. It will also drive early experiments with clients in their quantum journeys and accelerate the building of in-house skills and capabilities.
This initiative leverages the experience of specialist technical teams within the Capgemini stable who have already built scientific and technology capabilities in quantum through early experimentation and incubation with clients.
In addition, Capgemini has signed an agreement with IBM to become an IBM Quantum Hub providing its clients access to IBM’s quantum computing systems, including IBM’s recently announced 127 qubit processor, Eagle, as well as to IBM’s quantum expertise and Qiskit, IBM’s open-source quantum information software development kit. By working with IBM, Capgemini joins more than 170 IBM Quantum Network members, including Fortune 500 companies, start-ups, academic institutions and research labs, all working to advance quantum computing and explore practical applications.
Together, the IBM Quantum team and clients are researching and exploring how quantum computing will help a variety of industries and disciplines, including finance, energy, chemistry, materials science, optimization and machine learning, among many others.
Through this agreement, Capgemini will make it easier for clients to access IBM’s licensed technology and provide them with professional services for end-to-end implementation. It is intended to ultimately demonstrate, with prototypes and proofs of concepts, the potential value of leveraging quantum technologies to tackle previously intractable business problems for clients, working towards implementing quantum computing use cases.
Also Read: Will Quantum Computing Be a Game-Changer?
“Quantum technology will disrupt the way we compute, sense, and communicate and will create new industries and business models along the way. The launch of our Q-lab tangibly demonstrates our ambition to bring to our clients the most innovative, breakthrough solutions, and to invest in capabilities early on so we can become the leading quantum systems integrator,” said Pascal Brier, Chief Innovation Officer at Capgemini and member of the Group Executive Committee. “Our collaboration with IBM will enable us to explore the vast potential of quantum computing, bringing to our clients the top capabilities and skills available in the market today and tomorrow.”
“Establishing a quantum industry will require a deep focus on expanding the quantum computing ecosystem across public and private sectors – something IBM cannot do alone,” said Jay Gambetta, IBM Fellow and VP, Quantum Computing at IBM. “By working with Capgemini, clients have even more options for hands-on expertise to develop proofs of concepts to explore the potential of quantum computing across a variety of industries and disciplines.”
The Q-lab will focus on three areas of value creation for clients:
- Quantum Computing refers to using quantum properties to perform computations[1]. Leading application areas are problems requiring complex optimization, simulation, or machine learning. Companies that typically rely on heavy compute facilities, such as molecular design within life science, fluid dynamics in aerospace, or stochastic financial models, will be amongst the first to benefit.
- Quantum Communications involves transmitting and controlling information using the laws of quantum mechanics. Quantum-secure communications could significantly impact areas critical to science, industry, and data security. In addition, it is intended to allow clients to access the new realm of possibilities brought by quantum technologies, particularly on confidential computing, data storage and sharing.
- Quantum Sensing refers to the measurement of quantum states, which are extremely sensitive to disturbance[2]. Quantum sensing underpins advances in medical diagnosis, autonomous transport and intelligent industries. It can help measure electric and magnetic fields accurately, measure physical quantities against atomic properties, and use quantum entanglement to improve sensitivity or precision.